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Abstract

In this paper, natural frequencies and mode shapes for a conical shell with an annular end plate or a round end plate are

investigated in detail by combining the vibration theory with the transfer matrix method. The governing equations of

vibration for this structure are expressed in terms of a matrix differential equation, and a novel recurrence formula method

that can close in on analytical solution of transfer matrix is presented. Once the transfer matrix of single component has

been determined, and the product of each component matrix and the joining matrix can obtain entire structure matrix. The

frequency equations and mode shape functions are represented in terms of the elements of the structural transfer matrices.

The 3D finite element numerical simulations have verified the present formulas of natural frequencies and mode shapes.

The conclusions show that the transfer matrix method can accurately obtain natural vibration characteristics of the conical

shell with an annular end plate.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

A conical shell with an annular end plate is a kind of useful structure in the aeronautical, aerospace and
civil industries. Nowadays, the shell structure becomes larger and thinner and its vibration problem becomes
more and more important than before. Therefore, the wide engineering applications of the shell structures
have attracted considerably researchers’ interest and many methods for investigating their dynamical
characteristics have been promoted. Presently, many researchers concentrate their investigations on dynamic
characteristics of a conical shell, a thin-walled round plate and a combination of cylindrical shell and
round plates [1–12], but there are few research reports relative to this system of the conical shell with an
annular end plate.

Transfer matrix method has been utilized in engineering applications for many years. Holzer originally
employed the transfer matrix approach for an approximate solution of the differential equation governing the
torsional vibration of rod in 1921 and the method is generally known as Holzer’s method. Myklestad
presented an approach quite analogous to Holzer’s for the treatment of beam [13]. The relative equations were
rearranged and simplified by Thomson to permit a systematic tabular computation and to expand this method
to more general problems [14]. One of the earliest applications of transfer matrix method was the steady-state
description of four terminal electrical networks, in which the method is commonly designated as a ‘‘four-pole
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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parameters’’. Rubin et al. [15–17] systematically applied four-pole parameters approach to acoustical,
mechanical, and electromechanical vibrations. Murthy, Kalnins, Irie et al. [18–26] extended the applications of
transfer matrix approach to a rotor blade, plate, symmetric shell and stiffened ring through a completely
general treatment.

In this paper, natural frequencies and mode shapes of a conical shell with an annular end plate or a
round plate are investigated in detail by combining the vibration theory with the transfer matrix method.
The governing equations of vibration for a conical shell and an annular end plate are expressed in
terms of matrix differential equations, and a new recurrence formula method that can close in on analytical
solution of transfer matrix is presented. Once the transfer matrix of single component has been determined,
the product of each component matrix and the joining matrix can form the matrix of entire structure. The
frequency equations and mode shape functions are represented in terms of the matrix elements. 3D finite
element analysis has validated the present formulas of natural frequencies and mode shapes. The conclusions
show the transfer matrix obtained by present formulas can accurately reveal natural vibration characteristics
of the conical shell with an annular end plate.

2. Theoretical analysis

In order to investigate the dynamic characteristics of the combined shell, the coefficient matrices of a conical
shell and an annular end plate should be derived, respectively. Then the elements of transfer matrix can be
obtained by employing recurrence formula method. The frequency equations and mode shape functions are
represented in terms of the elements of the structural transfer matrices.

2.1. Coefficient matrix of the conical shell

Fig. 1 shows a combined structure of the conical shell with an annular end plate. a denotes the semi-vertex
angle of the truncated conical shell, h expresses the thickness of conical shell and annular plate, and H

is distance form the middle surface of annular plate to the large edge of conical shell. The radius of large edge
for the conical shell is R, and outer radius and inner radius of the annular plate are R1 and R2. The surface
co-ordinates (B; y; z) are taken in the middle surface as shown in Fig. 1. Based on the flÜgge theory [27],
the equations of flexural vibration for a thin-walled conical shell can be written in a differential equation of
the coefficient matrix A(B) as

dX ðBÞ=dB ¼ AðBÞ:X ðBÞ, (1)

here state vector X ðBÞ ¼ ū v w f MB V B NB SBy
� �

is denoted by the dimensionless variables. u, v and w are
the displacements in circumferential, meridional and normal directions, respectively; f, NB, MB, V Band SBy are
the bending slope, the membrane force, the bending moment, the Kevlin–Kirchhoff shearing force and shear
Fig. 1. The conical shell with an annular end plate.
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resultant, respectively. They are defined as follows:

u v wf g ¼
1

R
u v wf g; f̄ ¼ f; NB ¼ NBR

2=D; MB ¼MBR=D,

V B SBy
� �

¼ Vs SBy
� �

R2=D; D ¼ Eh3= 12ð1� n2Þ
� �

, (2)

where D is flexural rigidity expressed by Young’s modulus E, Poisson’s ratio v and thickness h of the shell. In
order to simplify the formulas, the following dimensionless parameters are introduced:

B ¼ d=R; B1 ¼ d1=R; B2 ¼ d2=R; B3 ¼ R1=R; B4 ¼ R2=R
� �

. (3)

The frequency parameter is described as

p4 ¼ rhR4o2=D, (4)

here r is the mass density, and o is the frequency in the rad/s. d is the distance form vertex to arbitrary point in
the middle surface of the conical shell. The non-zero elements of the coefficient matrix A(B) in Eq. (1) can be
derived as follows (a detailed derivation is shown in Appendix A):

A11 ¼
1

B
; A12 ¼

n

B sin a
; A13 ¼

nh2

6B3R2tga sin a
; A14 ¼ �

nh2

6B2R2tga sin a
,

A18 ¼
h2

6R2 1� nð Þ
; A21 ¼ �

nn

B sin a
; A22 ¼ �

n
B
; A23 ¼ �

n
Btga

; A27 ¼
h2

12R2
,

A34 ¼ 1; A43 ¼
nn2

B2 sin2 a
; A44 ¼ �

n
B
; A45 ¼ 1; A53 ¼ �

3þ nð Þ 1� nð Þn2

B3 sin2 a
,

A54 ¼ 1þ nþ
2n2

sin2 a

� �
1� nð Þ

B2
; A55 ¼ �

1� n
B

; A56 ¼ 1; A61 ¼ �
12 1� n2
� �

nR2

h2B2tga sin a
,

A62 ¼ �
12 1� n2
� �

R2

h2B2tga
; A63 ¼ p4 �

12 1� n2
� �

R2

h2B2tg2a
� 2þ

ð1þ nÞn2

sin a

	 

1� nð Þn2

B4 sin2a
,

A64 ¼
3þ nð Þ 1� nð Þn2

B3 sin2 a
; A65 ¼

nn2

B2 sin2 a
; A66 ¼ �

1

B
; A67 ¼ �

n
Btga

,

A71 ¼
12 1� n2
� �

R2

h2B2 sin a
; A72 ¼ �p4 þ

12 1� n2
� �

R2

h2B2
,

A73 ¼
12 1þ nð ÞR2

h2
�

n2

B2 sin2 a

	 

1� n
B2tga

; A74 ¼
1� nð Þn2

B3 sin2 atga
; A77 ¼ �

1� n
B

,

A78 ¼ �
n

B sin a
; A81 ¼ �p4 þ

12 1� n2
� �

n2R2

B2h2 sin2 a
; A82 ¼

12 1� n2
� �

nR2

B2h2 sin2 a
,

A83 ¼
12 1þ nð ÞR2

h2
þ

1

n2
þ
ð1þ nÞn2

n2 sin2a

	 
�
1� nð Þn

B2tga sin a

�
; A84 ¼ �

2þ nð Þ 1� nð Þn

B3tga sin a
,

A85 ¼ �
nn

B2tga sin a
; A87 ¼

nn

B sin a
; A88 ¼ �

2

B
. (5)

here n is the circumferential wavenumber.
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2.2. Coefficient matrix of the annular plate

For an annular end plate, the governing equations can be derived as a special case of a conical shell by
taking the limiting values 1=B sin a

� �
! 1=B
� �

; 1=Btga
� �

! 0. The matrix equation has the same expression as
Eq. (1). In this case, the non-zero elements of the coefficient matrix A(B) become:

A11 ¼
1

B
; A12 ¼

n

B
; A18 ¼

h2

6R2 1� nð Þ
; A21 ¼ �

nn

B
; A22 ¼ �

n
B
; A27 ¼

h2

12R2
; A34 ¼ 1,

A43 ¼
nn2

B2
; A44 ¼ �

n
B
; A45 ¼ 1; A53 ¼ �

3þ nð Þ 1� nð Þn2

B3
; A54 ¼ ð1þ nþ 2n2Þ

1� nð Þ

B2
,

A55 ¼ �
1� n
B

; A56 ¼ 1; A63 ¼ p4 � 2þ 1þ nð Þn2
� � 1� nð Þn2

B4
; A64 ¼

3þ nð Þ 1� nð Þn2

B3
,

A65 ¼
nn2

B2
; A66 ¼ �

1

B
; A71 ¼

12 1� n2
� �

R2

h2B2
; A72 ¼ �p4 þ

12 1� n2
� �

R2

h2B2
; A77 ¼ �

1� n
B

,

U78 ¼ �
n

B
; A81 ¼ �p4 þ

12 1� n2
� �

n2R2

B2h2
; A82 ¼

12 1� n2
� �

nR2

B2h2
; A87 ¼

nn

B
; A88 ¼ �

2

B
. (6)

2.3. The joining matrix

In order to investigate the dynamic characteristics of the combined structure, the conical shell and the
annular end plate should be connected together. Therefore, the following continuity conditions and
equilibrium relations must be satisfied:

X B1 þ 0ð Þ
� �

c
¼ B½ �p!c X B3 � 0ð Þ

� �
p
, (7)

here the subscripts c and p denote conical shell and annular plate, respectively. The joining matrix B can be
given by

½B�p!c ¼

1 0 0 0 0 0 0 0

0 cos b � sin b 0 0 0 0 0

0 sin b cos b 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 cos b � sin b 0

0 0 0 0 0 sin b cos b 0

0 0 0 0 0 0 0 1

2
66666666666664

3
77777777777775

, (8)

here b ¼ p=2� a
� �

.

2.4. The transfer matrix

It is difficult to obtain the analytical solution of the coupled equations set (1) for a conical shell
or an annular end plate, so the transfer matrix approach is adopted here. In Refs. [18,19], the derivation
is only involved in zero-initial value (B0 ¼ 0). In this paper, the initial value has been extended to more
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general problems (non-zero initial value). Based on the definition of transfer matrix, the following
equation can be written as

X Bð Þ
� �

¼ T Bð Þ½ � X B0ð Þ
� �

, (9)

here B0 denotes initial value. Differentiating Eq. (9) with respect to B yields

d

dB
X Bð Þ
� �

¼
d

dB
T Bð Þ½ � X B0ð Þ

� �
. (10)

According to Eq. (9), the initial value of state vector can be obtained obviously

X B0ð Þ
� �

¼ T Bð Þ½ �
�1 X Bð Þ
� �

. (11)

Substituting Eq. (11) into Eq. (10), the following relation is given:

d

dB
X Bð Þ
� �

¼
d

dB
T Bð Þ½ � T Bð Þ½ �

�1 X Bð Þ
� �

. (12)

By comparing Eq. (1) with Eq. (12), the following equation is derived:

A Bð Þ½ � �
d

dB
TðBÞ½ � T Bð Þ½ �

�1

� �
X Bð Þ
� �

¼ 0f g. (13)

For all values of B, the state vector X cannot be zero. The following equation can be easily written:

A Bð Þ½ � ¼
d

dB
T Bð Þ½ � T Bð Þ½ �

�1. (14)

Then, post-multiplying T(B) on both sides of Eq. (14) yields

d

dB
TðBÞ½ � ¼ AðBÞ½ � TðBÞ½ �. (15)

Therefore, the transfer matrix is obtained by the solution of Eq. (15). If B equals to B0 in Eq. (9), the initial
condition will be

TðB0Þ½ � ¼ 1½ �. (16)

Eq. (16) provides the sufficient initial conditions in order to solve the differential equations set (15). Thus,
the transfer matrix of entire structure can be obtained

X ðBÞB¼B2 ¼ TcBp!cTpX ðBÞB¼B4 . (17)
2.5. Solution of the transfer matrix

Presently, the transfer matrix TðBÞ can be obtained by many ways. Kalnins [28] developed a multisegment,
direct, numerical integration approach, Cohen [29] presented an iteration method using approximate
eigenfunctions, Tottenham and Shimizu [30] used a matrix progression method, Sankar [31] showed an extend
transfer matrix method, and Irie et al. [22–26] employed Runge–Kutta–Gill method. Most of them are
approximate methods, and this paper demonstrates that the recurrence formula method that can close in on
analytical solution solves transfer matrix.
2.5.1. Recurrence formula

On the assumption that AðBÞ is continuous in the range [a, b], a and bX0, and TðBÞ is the only solution of
Eq. (15) under the initial condition (16), the series fTkðBÞg can be constructed firstly

T0ðBÞ ¼ I .
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T1ðBÞ ¼ I þ

Z B

B1

AðsÞ:T0ðsÞ ds,

..

.

TkðBÞ ¼ I þ

Z B

B1

AðsÞ:Tk�1ðsÞ ds. (18)

The difference between Tkþ1 and Tk is

Tkþ1ðBÞ � TkðBÞ ¼
Z B

B1

AðsÞ½TkðsÞ � Tk�1ðsÞ� ds. (19)

Taking norm on both sides of Eq. (19) in normed linear space, the following equation is given

Tkþ1ðBÞ � TkðBÞ
 ¼

Z B

B1

AðsÞ½TkðsÞ � Tk�1ðsÞ� ds


 p

Z B

B1

AðsÞ
 TkðsÞ � Tk�1ðsÞ

 ds

pM

Z B

B1

TkðsÞ � Tk�1ðsÞ
 ds

pM2

Z B

B1

ds

Z B

B1

Tk�1ðsÞ � TkðsÞ
 ds

..

.

pMn

Z B

B1

ds

Z B

B1

ds:::

Z B

B1

T1ðsÞ � T0ðsÞ
 ds, ð20Þ

where

T1ðBÞ � T0ðBÞ ¼
Z B

B1

AðsÞ:T0ðsÞ ds ¼

Z B

B1

AðsÞ ds. (21)

Thus

T1ðBÞ � T0ðBÞ
 p

Z B

B1

AðsÞ
 dspM:t, (22)

here M ¼ maxB1pBpb AðBÞ
 , and t is the length of integral region. By substituting Eq. (22) into Eq. (20), the

following equation can be obtained

Tkþ1ðBÞ � TkðBÞ
 pMkþ1 tkþ1

ðk þ 1Þ!
. (23)

Summing this Eq. (23) on both sides, the relationship is

X1
k¼0

Tkþ1

 ðBÞ � TkðBÞ
pX1

k¼0

ðMtÞkþ1

ðk þ 1Þ!
� eMt. (24)

Obviously, the series
P1
k¼0

ðTk�1 � TkÞ is consistent convergence and suppose its convergent result is TðBÞ � I .

By reason of that
Pk
k¼0

ðTkþ1 � TkÞ ¼ Tkþ1 � I ; the following equation can be derived:

lim
k!1

Tkþ1ðBÞ ¼ TðBÞ.
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Taking the limits for recurrence Eq. (18) yields

TðBÞ ¼ I þ

Z B

B1

AðsÞ:TðSÞ ds: (25)

Differentiating Eq. (25) with respect to B gives

dTðBÞ
dB
¼ AðBÞTðBÞ.

The result shows that the TkðBÞ in Eq. (18) will be the solution of matrix Eq. (15) when k becomes large
enough.
2.5.2. The only solution of transfer matrix TðBÞ
On the assumption that TðBÞ and Y ðBÞ are both the solutions of Eq. (15), the following equations can be

written:

TðBÞ ¼ I þ

Z B

B1

AðsÞ:TðsÞ ds and Y ðBÞ ¼ I þ

Z B

B1
AðsÞ:Y ðsÞ ds. (26)

The difference between TðBÞ and Y ðBÞ is

TðBÞ � Y ðBÞ ¼
Z B

B1

AðsÞ½TðsÞ � Y ðsÞ� ds. (27)

Taking the norm on both sides of Eq. (27) gives

Tk ðBÞ � Y ðBÞ
p

Z B

B1

AðsÞ
  TðsÞ � Y ðsÞ

 ds. (28)
Table 1

Eigenvalue equations of the conical shell with an annular end plate

Fp � Fc Fp � Sc F p �Cc

T51 T52 T53 T54

T61 T62 T63 T64

T71 T72 T73 T74

T81 T82 T83 T84

���������

���������
¼ 0

T11 T12 T13 T14

T31 T32 T33 T34

T51 T52 T53 T54

T71 T72 T73 T74

���������

���������
¼ 0

T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

���������

���������
¼ 0

Sp � Fc Sp � Sc Sp �Cc

T52 T54 T56 T58

T62 T64 T66 T68

T72 T74 T76 T78

T82 T84 T86 T88

���������

���������
¼ 0

T12 T14 T16 T18

T32 T34 T36 T38

T52 T54 T56 T58

T72 T74 T76 T78

���������

���������
¼ 0

T12 T14 T16 T18

T22 T24 T26 T28

T32 T34 T36 T38

T42 T44 T46 T48

���������

���������
¼ 0

Cp � Fc Cp � Sc Cp � Cc

T55 T56 T57 T58

T65 T66 T67 T68

T75 T76 T77 T78

T85 T86 T87 T88

���������

���������
¼ 0

T15 T16 T17 T18

T35 T36 T37 T38

T55 T56 T57 T58

T75 T76 T77 T78

���������

���������
¼ 0

T15 T16 T17 T18

T25 T26 T27 T28

T35 T36 T37 T38

T45 T46 T47 T48

���������

���������
¼ 0



ARTICLE IN PRESS
S. Liang, H.L. Chen / Journal of Sound and Vibration 294 (2006) 927–943934
Let H ¼ maxB1pBpb TðBÞ � Y ðBÞ
 , derive as aforementioned

TðBÞ � Y ðBÞ
 pH :

ðMtÞkþ1

ðk þ 1Þ!
. (29)
Table 2

Eigenvalue employed FEM and present method

m ¼ 0 m ¼ 1 m ¼ 2

n ¼ 0 FEM 3.4170 6.7660 10.145

Transfer matrix 3.4170 6.7660 10.155

Error/% 0 0 0.00

n ¼ 1 FEM 4.9232 8.3550 11.760

Transfer matrix 4.9282 8.3639 11.772

Error/% 0.10 0.11 0.10

n ¼ 2 FEM 6.3191 9.8670 13.320

Transfer matrix 6.3263 9.8810 13.342

Error/% 0.11 0.14 0.16

Fig. 2. Determinant value vs. frequency parameter p for n ¼ 0, 1, 2: (a) determinant value Dt vs. frequency parameter p for n ¼ 0; (b)

determinant value Dt vs. frequency parameter p for n ¼ 1; (c) determinant value Dt vs. frequency parameter p for n ¼ 2.
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Furthermore,

lim
k!1

ðMtÞkþ1

ðk þ 1Þ!
¼ 0. (30)

Substituting Eq. (30) into Eq. (29) yields

TðBÞ � Y ðBÞ
 ¼ 0.

Therefore, TðBÞ is the one and only solution of Eq. (15).

2.6. The eigenvalue equation

The elements of transfer matrix TðBÞ can be determined by employing recurrence formula (18). The
eigenvalue equations (or frequency equations) corresponding to the different boundary conditions can be
obtained. Generally, both the inner edge of annular plate and the large edge of conical shell may be one of
following three restriction conditions, i.e. free (F), simply supported (S) and clamped (C) boundary conditions:

At a free edge, M̄B ¼ V̄ B ¼ N̄B ¼ S̄By ¼ 0;
at a clamped edge, ū ¼ v̄ ¼ w̄ ¼ f̄ ¼ 0;
at a simply supported edge, ū ¼ w̄ ¼ M̄B ¼ N̄B ¼ 0.

Substituting the boundary conditions of annular plate and conical shell into Eq. (9), the eigenvalue equation
can be derived. Table 1 shows the eigenvalue equations of the structure under all nine combinations. The
natural frequencies of the system are determined by calculating the eigenvalues of these equations in Table 1.
Fig. 3. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape relative to eigenvalue p ¼ 3:4170 by FEM; (b)

mode shape of round plate corresponding to p00 ¼ 3:4170 by present method; (c) mode shape of conical shell corresponding to p00 ¼

3:4170 by present method.
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2.7. The mode shape function

Once the eigenvalue is determined, mode shape can be derived. Here, taken the boundary condition F p � Cc

for example, the transfer matrix of entire system can be written as

ū

v̄

w̄

f̄

M̄B

V̄ B

N̄B

S̄By

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

B¼B2

¼ Tij

� �

ū

v̄

w̄

f̄

M̄B

V̄ B

N̄B

S̄By

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

B¼B4

ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ. (31)

By substituting these boundary conditions into Eq. (31), extracting first, second, and third rows of this
equation, and assigning arbitrarily f̄ðB4Þ ¼ 1, the following equations set yields:

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
64

3
75

ū

v̄

w̄

8><
>:

9>=
>;

B¼B4

þ

T14

T24

T34

9>=
>;

8><
>: ¼ 0. (32)
Fig. 4. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape relative to eigenvalue p ¼ 6:7660 by FEM; (b)

mode shape of round plate corresponding to p01 ¼ 6:7660 by present method; (c) mode shape of conical shell corresponding to p01 ¼

6:7660 by present method.
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Solution of the displacement vector for the inner edge of annular plate can be written as

ū

v̄

w̄

9>=
>;

B¼B4

8><
>: ¼ �

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
64

3
75
�1

T14

T24

T34

9>=
>;

8><
>: ¼

b1
b2
b3

9>=
>;

8><
>: . (33)

The displacement vector at any point in the middle surface of annular plate can be obtained as

ū

v̄

w̄

8><
>:

9>=
>;

B4pBpB3

¼

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
64

3
75
B4pBpB3

b1
b2
b3

9>=
>;þ

T14

T24

T34

9>=
>;

B4pBpB3

8><
>:

8><
>: . (34)

With the same method, the displacement vector at any point in the middle surface of the conical shell can be
derived as

ū

v̄

w̄

8><
>:

9>=
>;

B1pBpB2

¼

T11 T12 T13

T21 T22 T23

T31 T32 T33

2
64

3
75
B1pBpB2

b1
b2
b3

9>=
>;þ

T14

T24

T34

9>=
>;

B1pBpB2

8><
>:

8><
>: . (35)
Fig. 5. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape corresponding to eigenvalue p ¼ 10:145 by

FEM; (b) mode shape of round plate corresponding to p02 ¼ 10:155 by present method; (c) mode shape of conical shell corresponding to

p02 ¼ 10:155 by present method.
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Fig. 6. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape corresponding to eigenvalue p ¼ 4:9232 by

FEM; (b) mode shape of round plate corresponding to p10 ¼ 4:9282 by present method; (c) mode shape of conical shell corresponding to

p10 ¼ 4:9282 by present method.
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Thus, the mode shape (displacement vector) can be calculated from the Eqs. (34) and (35). Using the same
method, the other elements in state vector will also be obtained easily.

3. Numerical analysis

A conical shell with a round end plate (made from aluminum) is taken for example, geometric parameters of
the combined shell are R ¼ 200mm, h ¼ 2mm, R1 ¼ 180mm, R2 ¼ 0 and H ¼ 96mm, and material
parameters are E ¼ 68.97GPa and m ¼ 0:3. The boundary conditions are F p � Cc. When B4 ¼ 0, the annular
plate will become a round plate. Therefore, the natural frequencies and their mode shapes can be obtained by
taking an extremely small value for B4, in this paper B4 ¼ 0:01. In order to verify the formulas presented by this
paper, finite element method (FEM) is also adopted here. The analytical software is ANSYS 7.0, and the
element type employed here is shell 63. By using Lanczos method, the natural vibration characteristics can be
acquired easily.

The nature frequencies of round plates and truncated conical shells can be calculated with the present
formulas, respectively. By comparing these results with those in Refs. [23,32], k (this paper k ¼ 9) in
recurrence Eq. (18) can be determined. Once the transfer matrix of single component has been obtained, the
product of each component matrix and the joining matrix can form the entire structure matrix. The solution of
Eq. (18) can utilize the software Mathematica. Some curves of the determinant value Dt with frequency
parameter p are provided partially. Figs. 2a–c show the curves for n ¼ 0, 1 and 2, respectively. Eigenvalue (or
natural frequency parameter) is expressed by pnm. Here m is the axial mode number and n denotes the
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Fig. 7. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape corresponding to eigenvalue p ¼ 8:3550 by

FEM; (b) mode shape of round plate corresponding to p11 ¼ 8:3639 by present method; (c) mode shape of conical shell corresponding to

p12 ¼ 8:3639 by present method.
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circumferential wave number as above mentioned. The mode shapes corresponding to eigenvalues can be
calculated by Eq. (34) and (35). Figs. 3a–8a are some mode shapes obtained by FEM, and Figs. 3b–8b and
Figs. 3c–8c are some mode shapes acquired by present formulas. A complete mode shape of the combined
shell is comprised of mode shapes of an end plate and a conical shell. In other words, under the same
eigenvalue, combining panel b with panel c forms a complete mode shape of the entire structure. In order to
compare mode shapes obtained by present formulas with those by 3D FEM, panels b and c denote the
dimensionless mode shapes of a meridian, ū, v̄ and w̄ must be transformed into u, v and w by Eq. (A.7a). n ¼ 0,
i.e. circumferential wavenumber is 0, and mode shapes is circular symmetry. n ¼ 1, i.e. circumferential
wavenumber is 1, and mode shape is axial symmetry. To check the accuracy of eigenvalue, comparison is also
made in Table 2.

Table 2 and Figs. 2–8 indicate that the results analyzed by present approach and FEM are in good
agreement with each other, which demonstrates that the method using present study is valid and transfer
matrix obtained by recurrence formula method can accurately calculate natural frequency and mode shape.

4. Conclusions

With the vibration theory and transfer matrix method combined, natural frequencies and mode shapes of
the conical shell with an annular end plate are investigated in detail. The governing equations of vibration for
this system are expressed in terms of matrix differential equations, and a novel recurrence formula method
that can close in on analytical solution of transfer matrix is presented. Once the transfer matrix of single
component has been determined, the product of each component matrix and the joining matrix can form the
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Fig. 8. Eigenvalue and mode shape analyzed by FEM and present method: (a) mode shape corresponding to eigenvalue p ¼ 11:760 by

FEM; (b) mode shape of round plate corresponding to p12 ¼ 11:772 by present method; (c) mode shape of conical shell corresponding to

p12 ¼ 11:772 by present method.

S. Liang, H.L. Chen / Journal of Sound and Vibration 294 (2006) 927–943940
matrix of entire structure, and the frequency equations and mode shape functions are represented in terms of
the elements of the structural matrices. The 3D finite element numerical simulation has validated the present
formulas of natural frequencies and mode shapes. The conclusions show the transfer matrix obtained by
present method can accurately reveal dynamic characteristic of the conical shell with an annular end plate.
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Appendix A

According to the flÜgge theory, the governing equation of flexural vibration for the conical shell are written
as

1

B
q BNBy
� �
qB

þ
1

B sin a
qNy

qy
�

Qy

Btga
þ rho2u ¼ 0,

1

B
q BNB
� �
qB

þ
1

B sin a
qNyB

qy
�

Ny

B
þ rho2v ¼ 0,
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�
Ny

Btga
�

1

B sin a
qQy

qy
�

1

B
q BQB

� �
qB
þ rho2w ¼ 0. ðA:1Þ

The Kevlin–Kirchhoff shearing force and shear resultant is

V B ¼ QB þ
1

B sin a
qMBy

qy
; SBy ¼ NBy �

MBy

Btga
. (A.2)

The components of the shearing force are written as

QB ¼
1

B
q BMB
� �
qB

þ
1

B sin a
qMyB

qy
�

My

B
,

Qy ¼
1

B
q BMBy
� �
qB

þ
1

B sin a
qMy

qy
þ

MyB

B
. ðA:3Þ

The components of membrane force are given by

NB ¼
12D

h2

qv

qB
þ

n
B

1

sin a
qu

qy
þ vþ

w

tga

� ���
,
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12D

h2
n
qv

qB
þ

1

B
1

sin a
qu

qy
þ vþ

w

tga

� ���
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6ð1� nÞD
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qu
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� u

� ���
. ðA:4Þ

The bending moment can be written as

MB ¼ D
qf
qB
þ

n
B

1

B sin2 a

q2w

qy2
þ f

� ���
,

My ¼ D n
qf
qB
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1

B
1

B sin2 a

q2w

qy2
þ f

� ���
,
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qy
�

1

B
qw

qy

� �
. ðA:5Þ

The slope of the displacement w can be expressed by

f ¼
qw

qB
. (A.6)

For the steady vibration of shell, let us take

u v w
��
¼ R u sin ny v cos ny w cos ny

�
;

�
(A.7a)

f ¼ f cos ny, (A.7b)

MB My MBy

on
¼

D

R
Ms cos ny My cos ny MBy sin ny

on
, (A.7c)

NB Ny NBy

on
¼

D

R2
Ns cos ny Ny cos ny NBy sin ny

on
, (A.7d)

QB Qy

on
¼

D

R2
QB cos ny Qy sin ny

on
, (A.7e)

V B SBy

on
¼

D

R2
V B cos ny SBy sin ny

on
. (A.7f)
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By eliminating My MBy QB Qy Ny NBy from the equations (A.1–A.7), the matrix differential equation
yields as follows:

d

dB

ū

v̄

w̄

f̄

M̄B

V̄ B

N̄B

S̄By

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

¼ Aij

� �

ū

v̄

w̄

f̄

M̄B

V̄ B

N̄B

S̄By

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ði; j ¼ 1; 2; 3; 4; 5; 6; 7; 8Þ. (A.8)
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